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ABSTRACT

Damage tolerance requirements have become an important consideration in the
design and fabrication of composite structural components for modern aircraft.
The ability of a component to contain a flaw of a given size without serious
loss of its structural integrity is of prime concern. Composite laminates are
particularly susceptible to damage caused by transverse impact loading.

The ongoing research program described herein is aimed, therefore, at develop-
ing experimental and analytical methods that can be used to assess damage tol-
erance capabilities in composite structures subjected to impulsive loading.
The objective of this presentation is to outline some significant results of
this work and the methodology used to obtain them, including

(1) Identification of the mechanisms that cause delamination damage initi-
ation and growth under impact loading (Grady and Sun, 1986)

(2) calculation of the dynamic delamination "fracture toughness" in com-
posite laminates (Sun and Grady, 1987)

(3) Computational simulation of dynamic response and damage initiation in
composite laminates (Grady, Chamis, and Aiello, 1987)

(4) Measurement of the effect that impact damage has on the structural
integrity of a laminate (Grady and Chamis, 1988)
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LEWIS BALLISTIC IMPACT RESEARCH

The unique ballistic impact test facility at the Lewis Research Center is used
for performing a variety of instrumented impact tests. In addition to multiple
channel high-speed digital data acquisition capabilities, a series of high-
speed cameras can be used to record the impact event photographically. The
impact cannon itself is able to accommodate impactors ranging in size from 1/2
to 6 inches in diameter. It has been used to simulate the impact of birds on
engine components and is currently being used to investigate dynamic crack
propagation in composite materials.

Post-impact inspections of damaged specimens can be conducted with any of the
available supporting experimental facilities, which include:

¢ Ultrasonic C-scan and x-ray inspection facilities, which are used to
detect the type and location of impact damage

e A vibration testing facility used to measure natural frequencies and mode
shapes of damaged specimens

* Static and fatigue load frames to measure the reduction in strength,
stiffness, and durability of test specimens caused by impact
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DYNAMIC FRACTURE TOUGHNESS IN COMPOSITES

A combined experimental and analytical approach was used (Grady and Sun, 1986,
1988) to predict both the dynamic response measured in a simulated engine
blade and the dynamic delamination fracture toughness of the composite mate-
rial. Impact tests were conducted on cantilevered graphite/epoxy laminates,
and a two-dimensional finite element model was developed to computationally
simulate the post-impact dynamic response. Correlations between calculated
crack-tip strain energy release rates and high-speed photographs of crack
initiation and propagation were used to estimate the dynamic fracture toughness
of the composite material.
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DYNAMIC DELAMINATION BUCKLING: COMPUTATIONAL SIMULATION

A unique dynamic delamination buckling and delamination propagation analysis
capability has been developed and incorporated into the MSC/NASTRAN finite ele-
ment analysis computer program. This capability consists of (1) a modifica-
tion of the direct time integration solution sequence which provides a new
analysis algorithm that can be used to predict delamination buckling in a lami-
nate subjected to dynamic loading, and (2) a new method of modeling the compos-
ite laminate using plate-bending elements and multipoint constraints. With
these modifications, NASTRAN is used to predict both impact-induced buckling

in composite laminates with initial delaminations and the strain energy release
rate due to extension of the delamination (Grady et al., 1987). It is shown
that delaminations near the outer surface of a laminate are susceptible to
local buckling and buckling-induced delamination propagation when the laminate
is subjected to transverse impact loading. The capability now exists to pre-
dict the time at which the onset of dynamic delamination buckling occurs, the
dynamic buckling mode shape, and the dynamic delamination strain energy release
rate.
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STIFFNESS LOSS DUE TO IMPACT DAMAGE

A series of additional post-impact tests were conducted on the composite impact
specimens to measure the effect of impact damage on the structural integrity of
the laminates. A decrease in stiffness, such as that caused by impact damage,
results in a corresponding decrease in the natural frequencies of a damaged
composite structure. To quantify this effect for the case of impact-induced
delamination, the first four natural frequencies of a series of cantilevered
composite specimens with initial embedded delaminations were measured before
and after impact. The measured reduction in the natural frequencies of the
first four bending modes for varying amounts of impact damage are compared with
the results of a two-dimensional plane strain finite element simulation of the
damaged specimens in the figures below. The difference between the two curves
represents the extent to which damage other than delamination has occurred in
the laminates.
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DETECTING IMPACT DAMAGE

Composite laminates are particularly susceptible to damage caused by trans-
verse impact. Ply debonding, or delamination, is the most serious type of
impact damage. One method of detecting delamination in composites is by non-
destructive ultrasonic C-Scan. Shown below are C-Scans of composite laminates
that have been impacted at various energy levels, causing different amounts and
distributions of damage. The corresponding effects of this damage on the natu-
ral frequencies of vibration are shown below. The loss of stiffness caused by
delamination is most apparent in the reduction of natural frequencies for the
higher modes of vibration. Since impact damage such as delamination is often
undetectable visually, either of these methods can serve as a practical means
of field-testing a composite structure to determine if significant amounts of
internal damage exist.
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EFFECT OF DELAMINATION ON BUCKLING LOADS

Instrumented composite impact specimens were tested in compression after being
impacted at velocities up to 1000 ft/s with a soft rubber projectile. Longitu-
dinal strain measurements at three gage locations were used to identify the
buckling loads. Small amounts of impact-induced delamination damage were found
to cause a significant drop in the critical buckling loads, as shown in the
last figure. Compressive longitudinal stress near the delaminated area can
cause a secondary '"local" buckling of the delamination and an increased drop

in the effective load-carrying capability of the laminate.
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EFFECT OF IMPACT DAMAGE ON POST-BUCKLING DISPLACEMENTS

Impact damage which is not detectable by visual inspection may cause a signifi-
cant loss in the structural integrity of a composite laminate. This is illus-
trated below, using post-impact compression tests of damaged graphite/epoxy
laminates. Experimentally measured post-buckling configurations at several
load levels show that internal damage caused by transverse impact can cause a
large "direction-dependent' stiffness loss in composite laminates.

Under uniform compression loading, the laminate buckles in the direction of
the prior impact load, as shown on the left. The measured displacement shape
shows that the effective bending stiffness is significantly reduced from that
of the original undamaged laminate. If lateral restraints are used to support
the laminate in this direction, buckling occurs in the opposite direction, and
the laminate shows a much higher post-buckling stiffness at all load levels.
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